
会员
自然语言处理应用与实战
更新时间:2023-04-25 10:02:26 最新章节:反侵权盗版声明
书籍简介
本书系统介绍了自然语言处理及深度学习,并结合实际应用场景和综合案例,深入浅出地讲解自然语言处理领域的相关知识。全书共15章,分为4个部分。第1部分是自然语言处理基础,首先介绍自然语言处理的相关概念和基本技能,然后介绍词向量技术和实现方法,最后介绍关键词提取技术。第2部分是自然语言处理核心技术,分别介绍朴素贝叶斯算法、N-gram语言模型、PyTorch深度学习框架、FastText模型文本分类和基于深度学习的文本分类。第3部分是序列标注,介绍序列标注的具体应用,如HMM词性标注和HMM命名实体识别等常见的自然语言处理应用场景。第4部分是预训练模型,它在很大程度上促进了自然语言处理的发展,这部分内容关注预训练模型的具体应用,如ALBERT的命名实体识别、Transformer的文本分类、BERT的文本相似度计算、ERNIE的情感分析等。本书适合对人工智能、机器学习、深度学习和自然语言处理感兴趣的读者阅读,也可以作为应用型本科院校和高等职业院校人工智能相关专业的教材。
上架时间:2023-03-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
同类热门书
最新上架
- 会员全书通过118个实用技巧讲解+118集教学视频演示+160多个素材回复文件+144页PPT教学课件,通过“提问生成+修改润色+热门模板+应用案例”4大专项内容,帮助小白快速成为AI文案高手!本书具体内容包括16种AI提问技巧、13种指令优化技巧、11种高效提问技巧、9种文案修改技巧、7种文案润色方法、11类营销文案指令模板、12类办公文案指令模板、13类自媒体文案指令模板、12类教育学术文案指令模计算机11.6万字
- 会员本书从ChatGPT的基础知识讲起,针对运营工作中的各种痛点,结合实战案例,如文案写作、图片制作、社交媒体运营、爆款视频文案、私域推广、广告策划、电商平台高效运营等,教会读者如何使用ChatGPT进行智能化工作;还介绍了通过ChatGPT配合Midjourney、D-ID等AI软件的使用,进一步帮助提高运营工作的效率。计算机11.3万字
- 会员本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型计算机12.2万字
- 会员本书通过13章的探讨,带领读者踏上项目管理卓越之路。第1章“人工智能颠覆与重塑项目管理”,首先揭示了人工智能对项目管理的深刻影响和带来的机遇与挑战。紧接着,第2章至第13章依次介绍了使用ChatGPT编写各种文档、在项目启动中的应用、帮助组建高效团队、辅助项目沟通管理、项目计划与管理、项目成本管理、项目时间管理、项目质量管理、项目风险管理、辅助采购计划与采购流程、辅助项目绩效管理以及进行项目总结等计算机16.6万字
- 会员本书讲解如何利用AI工具来高效制作和设计PPT,全书共分为8章,前面7章分别介绍了PPT不同制作内容的相关知识和技巧,包括软件操作层面、设计思维层面、素材应用层面的内容,第8章模拟了两个真实工作场景下的PPT使用需求,逐步讲解设计的关键环节,旨在帮助读者解决工作中的实际问题。计算机601字
- 会员本书共分为8章,分别讲解了常见的人工智能以及人工智能影响下的广告流量变现、商业合作变现、直播变现、私域变现和IP变现等。此外,还对未来的人工智能与新媒体变现做了趋势分析。计算机10.5万字
- 会员本书共有10章,包括51个实操案例解析和80个行业案例分析。书中内容从技能线和案例线展开介绍。技能线:从人工智能的相关技术入手,不仅介绍了AI训练师的发展历程和行业动态,还重点讲述了AI训练师的职业技能提升方法。案例线:不仅涵盖了AI领域的各个方面,而且非常注重算法与模型的实际应用,通过分析大量的经典案例,可以让读者更好地掌握AI训练的相关技能。计算机11.6万字
- 会员本书聚焦如何高效运用DeepSeek这一前沿AI工具,帮助读者在技术浪潮中把握机遇。全书从DeepSeek发展历程切入,系统解析DeepSeek在信息处理、创意生成与决策辅助中的核心能力,并结合生活管理、职场协作、学习优化、社交互动等场景,通过真实案例讲解其应用方法。同时,针对内容创作、自媒体运营、副业变现等需求,书中提供了可落地的策略与案例,助力读者实现效率提升与价值创造。书中不仅提供技术使用技计算机5.5万字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字